On Stationary Axially Symmetric Interior Solutions in General Relativity

D. RAWSON-HARRIS

Mathematics Department, University of Manchester, Manchester 13

Abstract

This note presents the coordinate transformation by which the coordinate condition of a previous paper (Rawson-Harris, 1972) may be imposed.

Suppose that a metric is given in the coordinates $x^{\mu} = (z, r, \phi, t)$, in the region I of the previous paper, in the form

$$
ds^{2} = g_{11}(dz^{2} + dr^{2}) + g_{33} d\phi^{2} + 2g_{34} d\phi dt + g_{44} dt^{2}
$$
 (1)

where $g_{33} = r^2 \gamma_{33}$, and also that

$$
\text{Lt } r^{-2} g_{33} g_{44} = \text{Lt } \gamma_{33} g_{44} = -(h(z))^2 \tag{2}
$$

for h non-zero. The differentiability of $g_{\alpha\beta}$, γ_{33} , and h will be considered later.

Any transformation of z, r to \bar{z} , \bar{r} according to

 \sim

$$
D^2 \bar{r} \equiv \frac{\partial^2 \bar{r}}{\partial z^2} + \frac{\partial^2 \bar{r}}{\partial r^2} = 0 \tag{3a}
$$

$$
\frac{\partial \bar{z}}{\partial z} \equiv \bar{z}_{,z} = \bar{r}_{,r}, \qquad \bar{z}_{,r} = -\bar{r}_{,z} \tag{3b}
$$

together with $\bar{\phi} = \phi$, $\bar{t} = t$, will preserve the form (1):

$$
ds^{2} = \bar{g}_{11}(d\bar{z}^{2} + d\bar{r}^{2}) + \bar{g}_{33} d\bar{\phi}^{2} + 2\bar{g}_{34} d\bar{\phi} d\bar{t} + \bar{g}_{44} d\bar{t}^{2}
$$
(4)

and also gives $\bar{g}_{33} = g_{33}, \bar{g}_{44} = g_{44}.$ Let the metric $\bar{g}_{\alpha\beta}$ have the property that

$$
\text{Lt} \ \bar{r}^{-2} \bar{g}_{33} \bar{g}_{44} = \text{Lt} \ \bar{\gamma}_{33} \bar{g}_{44} = -1 \tag{5}
$$

Copyright © 1974 Plenum Publishing Company Limited. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photo-
copying, microfil

Assume that the transformation may be such that

$$
\bar{r} = rh(z) + O(r^{1+\delta})\tag{6}
$$

where $O(r^{1+\delta})$ refers to terms that are of order $r^{1+\delta}$ as $r \to 0$, $\delta > 0$, so that $\tilde{r} \rightarrow 0$ as $r \rightarrow 0$. Then (5) gives

$$
\begin{aligned}\n\text{Lt} \ \ \bar{r}^{-2} \, \bar{g}_{33} \, \bar{g}_{44} &= \text{Lt} \ (r^2 \, h^2 + O(r^{2+\delta}))^{-1} \, g_{33} \, g_{44} \\
&= \text{Lt} \ (r^2 \, h^2 + O(r^{2+\delta}))^{-1} \, r^2 \, \gamma_{33} \, g_{44} \\
&= h^{-2} \, \text{Lt} \, \gamma_{33} \, g_{44} \\
&= -1 \\
\text{Lt} \, \gamma_{33} \, g_{44} &= -h^2 \\
&= -h^2\n\end{aligned}
$$

i.e.

Thus (1) with (2) may be transformed into (4) with (5) and vice versa, if (3) and (6) may be satisfied for the function h .

To show that (3) and (6) may be satisfied, let $\bar{r} = rh(z) + u(z,r)$, so that (3a) implies that $D^2 u = -rh_{,zz}$. If h is analytic, so that $g_{\alpha\beta}$ and γ_{33} are also, as is usual, then $u = r^3v(z,r) + C(z,r)$ where C are complementary functions: $D^2 C = 0$. Thus $r = rh(z) + r^3v + C$. The conditions $C(z, 0) = 0$, $C_r(z,0) = 0$ are necessary for (6) and the transformation, and these, even applied on the part of the z-axis in I, are sufficient to set $C = 0$. Thus \vec{r} is unique for given h, and \bar{z} may be found from (3b) as it will always exist under the conditions assumed here.

If h, $g_{\alpha\beta}$ *,* and γ_{33} are not analytic, but only C^3 at least, then either h must be continued in some way for the whole of the range $-\infty < z < \infty$, or boundary conditions additional to $\bar{r}(z, 0) = 0$, $\bar{r}_r(z, 0) = h(z)$ must be imposed, say, on the remainder of the boundary of I or on lines $z = constant$, $r > 0$ which form a semi-infinite strip containing I , in order that \bar{r} be made unique for the given h. This problem is not a standard one because it involves Cauchy data for the Laplacian (see, e.g., Morse and Feshbach, 1953, Section 6.2) and one would have to consider individual cases.

Acknowledgement

I am grateful to the Mathematics Department of Manchester University for their hospitality, and to Professor W. B. Bonnor for a criticism of an earlier solution to the problem.

References

- Morse, P. M. and Feshbach, H. (1953). *Methods of Theoretical Physics.* McGraw-Hill, New York.
- Rawson-Harris, D. (1972). A new coordinate condition, and elementary flatness, for axially symmetric interior solutions in general relativity, *International Journal of Theoretical Physics,* Vol. 6, No. 1, p. 53.